Fundamental Trigonometric Identities

An identity is an equation that is true for all values of the variable(s). A trigonometric identity is an identity that involves trigonometric functions. The fundamental trigonometric identities are as follows.

Reciprocal Identities

\[ \begin{aligned} \csc x= & \frac{1}{\sin x} \quad \sec x=\frac{1}{\cos x} \quad \cot x=\frac{1}{\tan x} \\ & \tan x=\frac{\sin x}{\cos x} \quad \cot x=\frac{\cos x}{\sin x} \end{aligned} \]

Pythagorean Identities

\[ \begin{aligned} \sin ^{2} x+\cos ^{2} x & =1 \\ \tan ^{2} x+1 & =\sec ^{2} x \\ 1+\cot ^{2} x & =\csc ^{2} x \end{aligned} \]

Even-Odd Identities

\[ \begin{aligned} & \sin (-x)=-\sin x \\ & \cos (-x)=\cos x \\ & \tan (-x)=-\tan x \end{aligned} \]

Cofunction Identities

\[ \begin{gathered} \sin \left(\frac{\pi}{2}-x\right)=\cos x \quad \tan \left(\frac{\pi}{2}-x\right)=\cot x \\ \sec \left(\frac{\pi}{2}-x\right)=\csc x \\ \cos \left(\frac{\pi}{2}-x\right)=\sin x \quad \cot \left(\frac{\pi}{2}-x\right)=\tan x \\ \csc \left(\frac{\pi}{2}-x\right)=\sec x \end{gathered} \]

Proving Trigonometric Identities

To prove that a trigonometric equation is an identity, we use the following guidelines.

  1. Start with one side. Select one side of the equation.
  2. Use known identities. Use algebra and known identities to change the side you started with into the other side.
  3. Convert to sines and cosines. Sometimes it is helpful to convert all functions in the equation to sines and cosines.

Addition and Subtraction Formulas

These identities involve the trigonometric functions of a sum or a difference.

Formulas for Sine

\[ \begin{aligned} & \sin (s+t)=\sin s \cos t+\cos s \sin t \\ & \sin (s-t)=\sin s \cos t-\cos s \sin t \end{aligned} \]

Formulas for Cosine

\[ \begin{aligned} & \cos (s+t)=\cos s \cos t-\sin s \sin t \\ & \cos (s-t)=\cos s \cos t+\sin s \sin t \end{aligned} \]

Formulas for Tangent

\[ \begin{aligned} & \tan (s+t)=\frac{\tan s+\tan t}{1-\tan s \tan t} \\ & \tan (s-t)=\frac{\tan s-\tan t}{1+\tan s \tan t} \end{aligned} \]

Sums of Sines and Cosines

If \(A\) and \(B\) are real numbers, then

\[ A \sin x+B \cos x=k \sin (x+\phi) \]

where \(k=\sqrt{A^{2}+B^{2}}\) and \(\phi\) satisfies

\[ \cos \phi=\frac{A}{\sqrt{A^{2}+B^{2}}} \quad \sin \phi=\frac{B}{\sqrt{A^{2}+B^{2}}} \]

Double-Angle Formulas

These identities involve the trigonometric functions of twice the variable.

Formula for Sine

\[ \sin 2 x=2 \sin x \cos x \]

Formulas for Cosine

\[ \begin{aligned} \cos 2 x & =\cos ^{2} x-\sin ^{2} x \\ & =1-2 \sin ^{2} x \\ & =2 \cos ^{2} x-1 \end{aligned} \]

Formula for Tangent

\[ \tan 2 x=\frac{2 \tan x}{1-\tan ^{2} x} \]

Formulas for Lowering Powers

These formulas allow us to write a trigonometric expression involving even powers of sine and cosine in terms of the first power of cosine only.

\[ \begin{gathered} \sin ^{2} x=\frac{1-\cos 2 x}{2} \quad \cos ^{2} x=\frac{1+\cos 2 x}{2} \\ \tan ^{2} x=\frac{1-\cos 2 x}{1+\cos 2 x} \end{gathered} \]

Half-Angle Formulas

These formulas involve trigonometric functions of half an angle.

\[ \begin{gathered} \sin \frac{u}{2}= \pm \sqrt{\frac{1-\cos u}{2}} \quad \cos \frac{u}{2}= \pm \sqrt{\frac{1+\cos u}{2}} \\ \tan \frac{u}{2}=\frac{1-\cos u}{\sin u}=\frac{\sin u}{1+\cos u} \end{gathered} \]

Product-Sum Formulas

These formulas involve products and sums of trigonometric functions.

Product-to-Sum Formulas

\[ \begin{aligned} \sin u \cos v & =\frac{1}{2}[\sin (u+v)+\sin (u-v)] \\ \cos u \sin v & =\frac{1}{2}[\sin (u+v)-\sin (u-v)] \\ \cos u \cos v & =\frac{1}{2}[\cos (u+v)+\cos (u-v)] \\ \sin u \sin v & =\frac{1}{2}[\cos (u-v)-\cos (u+v)] \end{aligned} \]

Sum-to-Product Formulas

\[ \begin{aligned} & \sin x+\sin y=2 \sin \frac{x+y}{2} \cos \frac{x-y}{2} \\ & \sin x-\sin y=2 \cos \frac{x+y}{2} \sin \frac{x-y}{2} \\ & \cos x+\cos y=2 \cos \frac{x+y}{2} \cos \frac{x-y}{2} \\ & \cos x-\cos y=-2 \sin \frac{x+y}{2} \sin \frac{x-y}{2} \end{aligned} \]

Trigonometric Equations

A trigonometric equation is an equation that contains trigonometric functions. A basic trigonometric equation is an equation of the form \(T(\theta)=c\), where \(T\) is a trigonometric function and \(c\) is a constant. For example, \(\sin \theta=0.5\) and \(\tan \theta=2\) are basic trigonometric equations. Solving any trigonometric equation involves solving a basic trigonometric equation.

If a trigonometric equation has a solution, then it has infinitely many solutions.

To find all solutions, we first find the solutions in one period and then add integer multiples of the period.

We can sometimes use trigonometric identities to simplify a trigonometric equation.